Controller Design of Inverted Pendulum Using Pole Placement and Lqr

نویسندگان

  • P. Kumar
  • J. Mahto
چکیده

In this paper modeling of an inverted pendulum is done using Euler – Lagrange energy equation for stabilization of the pendulum. The controller gain is evaluated through state feedback and Linear Quadratic optimal regulator controller techniques and also the results for both the controller are compared. The SFB controller is designed by Pole-Placement technique. An advantage of Quadratic Control method over the pole-placement techniques is that the former provides a systematic way of computing the state feedback control gain matrix.LQR controller is designed by the selection on choosing. The proposed system extends classical inverted pendulum by incorporating two moving masses. The motion of two masses that slide along the horizontal plane is controllable .The results of computer simulation for the system with Linear Quardatic Regulator (LQR) & State Feedback Controllers are shown in section 6. Keyword-Inverted pendulum, Mathematical modeling Linear-quadratic regulator, Response, State Feedback controller, gain formulae. ------------------------------------------------------------------*****------------------------------------------------------------------------

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of LQR and PD controller for stabilizing Double Inverted Pendulum System

this paper presented comparison of the time specification performance between two type of controller for a Double Inverted Pendulum system. Double Inverted Pendulum is a non-linear ,unstable and fast reaction system. DIP is stable when its two pendulums allocated in vertically position and have no oscillation and movement and also inserting force should be zero. The objective is to determine th...

متن کامل

Stabilizing Controller Design for Self Erecting Single Inverted Pendulum using Robust LQR

This paper describes the method for trajectory tracking and balancing the Self Erecting Single Inverted Pendulum (SESIP) using Linear Quadratic Regulator (LQR). A robust LQR controller for stabilizing the SESIP is proposed in this paper. The first part of the controller is a Position Velocity (PV) controller to swing up the pendulum from its hanging position by moving the pendulum left and righ...

متن کامل

Optimal Control of Double Inverted Pendulum Using LQR Controller

Double Inverted Pendulum is a nonlinear system, unstable and fast reaction system. Double Inverted Pendulum is stable when its two pendulums allocated in vertically position and have no oscillation and movement and also inserting force should be zero. The aim of the paper is to design and performance analysis of the double inverted pendulum and simulation of Linear Quadratic Regulator (LQR) con...

متن کامل

Modelling & Simulation for Optimal Control of Nonlinear Inverted Pendulum Dynamical System using PID Controller & LQR

This paper presents the modelling and simulation for optimal control design of nonlinear inverted pendulum-cart dynamic system using Proportional-Integral-Derivative (PID) controller and Linear Quadratic Regulator (LQR). LQR, an optimal control technique, and PID control method, both of which are generally used for control of the linear dynamical systems have been used in this paper to control ...

متن کامل

Optimal Tuning of Linear Quadratic Regulators Using Quantum Particle Swarm Optimization

Linear Quadratic Regulator (LQR) is an optimal multivariable feedback control approach that minimizes the excursion in state trajectories of a system while requiring minimum controller effort. The behaviour of a LQR controller is determined by two parameters: state and control weighting matrices. These two matrices are main design parameters to be selected by designer and greatly influence the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014